Calculate the combinations for C(n,r) = n! / ( r!(n - r)! ). For 0 <= r <= n.
package demo;
import java.util.Scanner;
public class Ncr
{
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
int n, r, ncr;
System.out.print("Enter any two numbers-");
n = sc.nextInt();
r = sc.nextInt();
ncr = fact(n) / (fact(r) * fact(n - r));
System.out.print("The NCR factor of " + n + " and " + r + " is " + ncr);
}
public static int fact(int n)
{
int i = 1;
while (n != 0) {
i = i * n;
n--;
}
return i;
}
}
Output:
Enter any two numbers- 5
3
The NCR factor of 5 and 3 is 10
BUILD SUCCESSFUL (total time: 5 seconds)
package demo;
import java.util.Scanner;
public class Ncr
{
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
int n, r, ncr;
System.out.print("Enter any two numbers-");
n = sc.nextInt();
r = sc.nextInt();
ncr = fact(n) / (fact(r) * fact(n - r));
System.out.print("The NCR factor of " + n + " and " + r + " is " + ncr);
}
public static int fact(int n)
{
int i = 1;
while (n != 0) {
i = i * n;
n--;
}
return i;
}
}
Output:
Enter any two numbers- 5
3
The NCR factor of 5 and 3 is 10
BUILD SUCCESSFUL (total time: 5 seconds)
|
No comments:
Post a Comment